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The problem of “splicing” of a vortex flow in a certain finite region of an inco- 
mpressible fluid with the surrounding potential stream along a fluid streamline 
is considered in the case in which the Bernoulli constant is subject to discontin- 
uity of a given magnitude along the streamline separating these two flows. A 
solution is found in the form of integrals containing two unknown functions for 
the definition of the contour and the vortex sheet intensity. A system of two 
nonlinear integral equations is derived for the determiuation of these parameters 
and the results of certain computer calculations are presented. 

Some of the recent models of incompressible fluid flow with zones of separa- 
tion at high Reynolds numbers [l. 21 show that the limit solution of the Navier- 
Stokes equations defines a ilow with a constant vortex in the separation zone (in 
the case of plane flow) bordering on the external potential stream. This has pr- 
ompted a number of investigations of vortex and potential flows in contact along 
a fluid streamline. The problem of such flow in a given finite region is consid- 
ered in [r’l. A similar problem of flow in an unbounded region is considered in 
[4 - 63. and an application of this solution to the investigation of flows past bod- 
ies with stationary separation zones at high Reynolds numbers is presented in fl& 
The problem of “splicing” of vortex and potential flows in the presence of a boiy 
when the Bernoulli constant becomes discontinuous at the vortex zone boundary 
is examined in 183 in an approximate manner. 

Below we present a solution of the exactly formulated problem of “splicing” 
in the presence of a jump of Bernoulli’s comtant in a flow without rigid bound- 
aries, which according to fr] corresponds to infinitely great Reynolds numbers 
and special boundary conditions in the separation zone. 

1. Let us consider a two-dimensional stationary potential flow of a perfect incompr- 
essible fluid containing a zone I: of vortex ilow. Let the direction of the X-axis coin- 
cide with that of the potential stream at infinity and the length of the zone along this 
axis be equal to Z. We specify the vortex distribution by 

0 (s, y) = - o. sign y (0 1 = corlst > 0) 

and introduce in the usual manner the stream function $ 
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chp/ax = -l’, a1t/ay = u 

where u and u are velocity components along the X - and the Y-axes, respectively, 
normalized as all other magnitudes with respect to w,and 1/g 1. This stream function 
satisfies the Laplace equation and the Poisson equation Vv = sign y, respectively, 

outside region ‘2I and inside it. Let the Bernoulli constant be discontinuous at the boun- 

dary streamline L (boundary of region 2). 

By using the pressure continuity condition and the Bernoulli equation it can be shown 
that along L , Ye2 - Vi2 = h-where V is the velocity and h a constant equal to dou- 

ble the jump of Bernoulli’s constant at the boundary streamline. Subscripts i and e 

relate to the vortex and the potential flows.respectively. Since velocity is equal to 

within the sign to the derivative of I/J along a normal to the streamline, hence 

h = (8$/an,)’ - (ay/i3ni)” (1.1) 

where the right-hand side contains the limit values of the normal derivative at the bou- 

ndary of region IZ and directed toward the potential flow. 

Let us consider the following problem. We have to determine the stream function 

$ (x. Y) harmonic outside region .2 and satisfying equation Vv = sign y inside it for 
boundary conditions as follows: (a) along 
the contour L, which is yet to be deter- 

mined, we must have $ = $i = 
= ‘$ (X. 0) = Cowl and the condition 

(1.1) must be satisfied for specified va- 

lues of h: (b) at infinity &$/8;t, = 0 
and &#/ay = V,with the Latter also 

Fig. 1. 
remaining to be determined. 

2. Let 2 be the unknown region and let the curvature of its boundary satisfy the 
HLllder boundary conditions everywhere, except in the small region containing points 

A and B (Fig. 1). We seek function 11 (“r, y) in the form 

:I) = Y’,, + ?Pr -;- 1$2 (2.1) 

where gOis the stream function of a uniform flow at velocity V, and YI is the stream 
function of the flow induced by vortices emanating from region X . The purpose of the 

third term in (2.1) is to produce a discontinuity of velocity along the boundary stream- 
line and represents the logarithmic potential of a simple layer (from the point of View 

of hydrodynamics this term corresponds to the stream function of the vortex sheet spread 

along boundary L). We denote the intensity of the vortex sheet by r (x).The terms in 

(2.1) can now be written as 

where $I (J, y) is the logarithmic surface potential satisfying the equation of Laplace 
and Clv,= siK[l 7~ outside and inside of region 2’.respectively. Its first derivatives 
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(i. e. the velocity vector components) are continuous everywhere including the bound- 
ary. Similarly $s (t, y)is a function continuous at the boundary L and harmonic evety- 

where except at points of the contour. The limit values of its normal derivative sat- 

isfy the relationships 

8% wa 
Tiy~= l?sign y, -$$ + $$-= ano 2 a* 

ati 
I 

1 
$ 

I+ (5) cos ‘po sign qdZ 
anoK =-xi? r 

L 

(2.3) 

(2.4) 

where cps is the angle between the normal to the boundary at point K and the position 

vector F from that point to the point of integration. Using Eqs. (2.1) and (2.3) for the 

discontinuity of velocity at the boundary streamline, we obtain 

v,-v, r IVl=[s] sign y = [s] sign y = r (x) (2.5) 

Since the first derivatives of the logarithmic potential of the surface and of the simple 

layer vanish at infinity, hence 81$/&z = Oand alp/& = T’,when (5, y) = 00. Thus 
(2.1) and (2.2) provide the solution of our problem, provided that contour L and the 
vortex sheet intensity r (x) necessary for’satisfying condition (1.1) can be determined. 

Let region Z be symmetric about the X-axis. From (2.1) and (2.2) we then readily 

find that $(z, 0) 5 0, and consequently the boundary streamline 9 = f (XC) must satisfy 

equation 
YV,, -+ IpI (2”. y) + .lI’z (.?., 3) = 0 

A single integration of I/, (.T. 3) reduces this integral equation to 
1 

!j.+ 1’ v’l + q”) In I(; -s)’ + (11 - Y)~] d: - I;, (2.6) 

I=Z{2y- L/((i~t)ln[(1 +.~)*~~~~]~-(1-~)In[(l-~)~+~~]}‘- 

14-S - 1/” [arctg 1+ 
Y 

arclg 9 ,!-(I _1 
-/- 2)* arctg & - 

.- (1 - r!’ arcIF -2-J. ( rli (5) 
1 -.t I 11’ = dr 

where (E, ?l)and (z, y)are points of contour L and the expression for T;, in terms of 
I’ (z) and f (x) will be derived later. 

We transform condition (1.1) at the region boundary as follows. From (1.1) and (2.5) 
we have 

I-(z) = + = 
e 

h(iL++-’ 
I dn, sign y 

Furthermore 
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Calculating S&/&L and ~J&J and using (2.3) and (2.4), we finally obtain 

r (5) = + 1 h Vmcma -&+ sign 11 In r cos (n, no) dl + 
L 

+ -y s ln [(E _ ,q+yD] (g ._ &_ 9 I‘ Co9 v”yu w /-l (2.7) 
-i 

where a is the angle of inclination of the tangent to the contour at point (5, y) ,and n 
and %I are normals to the latter at points (&, ?j)and (5, Y) respectively. 

Relationships (2.6) and (2.7) represent a system of two nonlinear integral equations 
for the determination of the unknown f (.z) and r (z) 

3. Let us examine the boundary coadltfons which have to b satisfied by f (5) and 
I” (z). For h > 0 (the only case considered here) A and l? (Fig. 1) are critical points 
of the internal flow at which the skpe of the boundary streamline must be zero. (Other- 
wise these paints would also be critical in the external flow, which owing to the con - 
tir~uity of pressure and the differtnce of limit values of Bemoulli’s cowtam abug the 
boundq streamline, is not possible). For f (z) we thus have 

f (-1) = f (1) = f' (-1) = f' (1) = 0 (f’ = df/dz) (3.1) 

Since 

V,a - vis = h, v, - vi = r 

at the critical points A and B we similarly have 

r(4) = l?(l) = 1/G (3.2) 

Finally. the expression for V-in terms of f (z)andr (3)can be derived as follows. 
As shown in /J?], it is evident from the relationship V,,a - Vi” =h that at the critical 
points V, (-1, 0) = V, (1, 0) = l/h Furthermore, for any point Mlying on 
the X-axis to the left of point A 

At the limit with point Mapproaching point A along the X-axis we have I( (M) -P 
+ V,(-I, 0) = vh and for V-we obtain 

V, = vji-_ ag,/ay - a*,fay for x = - 1 - 0, Y = 0 (3.3) 

The calculation of derivative &/ay owing to its continuity, does not present any 
difficulty 

Wl 
ay.4 =- (3.4) 

Passing to the determination of3$/Byfor L =--1 - 0, y = 0 we note that 
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r (E) cos (R Y) dl z I (6) (3.5) 

where L,is the upper part of conrour L and the remaining notation is made clear in 
Fig. 2. The following relationship is valid 

(3.6) 
1 

To prove the validity of (3.6) we make an estimate of the difference 

Z (6) - Z (0) 1 < \ I’ 1 ‘OS ‘H”’ ” 
; 

- CO ‘5’ ‘) 1 dl + LL l? ) ax ‘R”’ ‘) - cos 5” ‘) ) dl 

where E is a fairly small but definite 

Fig. 2. 

ing estimates: 

(3.7) 

part of contour L, comprising point A. The integ- 
ral in (3.7) along curvel, - evanishes for (I + 0 
since its integrand is uniformly continuous along 
2. I- E and it is possible to pass to the limit in it. 
Passing to the estimate of the remaining integral, 
we note that 

lim [r-l cos (r, y)] = ‘/X0 fOr r + 0 

where K. is the curvature of contour L1 at point 
A [9l Allowing for this, we derive the follow- 

M~=max[cos~’ “‘1 npa (E, rl)Ee 

Having calculated the definite integral (for ij + 0)we finally obtain 

s I r cos(R Y) co8 (r, Y) rc+ I/r,’ 
R - r 

dl<2Modh--0 

c 

The relationship (3.6) is thus proved. 
After transformation, for v _, we obtain 

v,=dB+& ll{h [I + (iz;?)s] + 2;+z}dE (3.8) 

Note that in the integrand 
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Taking into consideration (3,8). we find that the system of Eqs. (2.6) - (2.7) contains 
only two u~nown functions: f (x) and r (z) which satisfy boundary conditions (3.1) and 

(3.9 
An analytical proof of the existence and uniqueness (or otherwise) of the solution of 

this system does not seem possible. Secause of this the system was solved numerically 
on a computer by the method of successive approximations [this explains the reason for 

the very special form of Eqs. (2.6) and (2.7)). It should be noted that the computer 
time needed for the calculation of a flow at one particular value of Iz is very consider- 

able. For this reason only a few data are presented here. 

-/ I 

Fig. 3. 

Streamlines I/‘ = ufor the upper half-plane, and the distribution of the VOI ‘tex sheet 

T (s) and of velocity along the contour, calculated for several values of 1~. are shown in 

Figs. 3 and 4, Curves 1 - 4 relate tolO% -20, 2.3. ;<.li and /I.‘t,respectively. 
The magnitude of vortex $, relative tb 2 t, i. where 

(It is the dimensional value of velocity at infinity, 
was found to be for these values of h .respectively, 
; ,!%: i .itl!‘. 7.Sfi and 8.21~7 _ Data forit = u were 

taken from 151. These calculations show that all cur- 
ves in Figs. 3 and 4 are, within limits of computat- 
ion accuracy* symmetric about the .?’ -axis. 

The author thanks G. I, Taganov for his vaiuable 

Fig, 4. remarks and constant attention to this work. 
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By means of an example of a classical problem in flight dynamics we examine 

the influence of approximation on the structure of the partitioning of the phase 

space and of the parameter space of a dynamic system. For a qualitative inve 
stigation of dynamic systems we can use the transition from the original model 

to a simplified or piece-wise integrable one, by approximating the characteris- 
tics in the equations of motion. Here arises the important question of the adm- 
issible deviations of the approximating functions from the real characteristics 
for the preservation of the necessary closeness between the original and the app- 

roximating system The concept of necessary closeness is not unique and is de- 

termined by the aims of the investigation. For example, it can be understood 

as the requirement of retaining for the approximating system ths same phase 
space and parameter space partitioning structure as for the original system [ 1). 

In a general formulation the problem reduces to the question of preserving or 
losing bifurcations during the transition to the approximating system. The diff- 
iculties arisising here are connected with the fact that not all the bifurcations 

may be kept track of by regular methods, and furthermore, for “fused” 




